Senin, 16 Maret 2015

Sistem Termodinamika



Dalam termodinamika dikenal istilah sistem dan lingkungan. Sistem adalah benda atau sekumpulan apa saja yang akan diteliti atau diamati dan menjadi pusat perhatian. Sedangkan lingkungan adalah benda-benda yang berada diluar dari sistem tersebut. Sistem bersama dengan lingkungannya disebut dengan semesta atau universal. Batas adalah perantara dari sistem dan lingkungan. Contohnya adalah pada saat mengamati sebuah bejana yang berisi gas, yang dimaksud dengan sistem dari peninjauan itu adalah gas tersebut sedangkan lingkungannya adalah bejana itu sendiri.

Jenis-jenis sistem
Klasifikasi sistem termodinamika berdasarkan sifat dari batasan dan arus benda, energi dan materi yang melaluinya. Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungannya, yaitu :
1)   Sistem terbuka
Sistem yang mengakibatkan terjadinya pertukaran energi (panas dan kerja) dan benda (materi) dengan lingkungannya. Sistem terbuka ini meliputi peralatan yang melibatkan adanya aliran massa kedalam atau keluar sistem seperti pada kompresor, turbin, nozel dan motor bakar. Sistem mesin motor bakar adalah ruang didalam silinder mesin, dimana campuran bahan bahan bakar dan udara masuk kedalam silinder, dan gas buang keluar sistem. Pada sistem terbuka ini, baik massa maupun energi dapat melintasi batas sistem yang bersifat permeabel. Dengan demikian, pada sistem ini volume dari sistem tidak berubah sehingga disebut juga dengan control volume. 
Perjanjian yang kita gunakan untuk menganalisis sistem adalah
a  Untuk panas (Q) bernilai positif bila diberikan kepada sistem dan bernilai negatif bila keluar dari sistem
b  Untuk usaha (W) bernilai positif apabila keluar dari sistem dan bernilai negatif bila diberikan (masuk) kedalam sistem.
2)   Sistem tertutup
Sistem yang mengakibatkan terjadinya pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran zat dengan lingkungan. Sistem tertutup terdiri atas suatu jumlah massa yang tertentu dimana massa ini tidak dapat melintasi lapis batas sistem. Tetapi, energi baik dalam bentuk panas (heat) maupun usaha (work) dapat melintasi lapis batas sistem tersebut. Dalam sistem tertutup, meskipun massa tidak dapat berubah selama proses berlangsung, namun volume dapat saja berubah disebabkan adanya lapis batas yang dapat bergerak (moving boundary) pada salah satu bagian dari lapis batas sistem tersebut. Contoh sistem tertutup adalah suatu balon udara yang dipanaskan, dimana massa udara didalam balon tetap, tetapi volumenya berubah dan energi panas masuk kedalam masa udara didalam balon. 
Sebagaimana gambar sistem tertutup dibawah ini, apabila panas diberikan kepada sistem (Qin), maka akan terjadi pengembangan pada zat yang berada didalam sistem. Pengembangan ini akan menyebabkan piston akan terdorong ke atas (terjadi Wout). Karena sistem ini tidak mengizinkan adanya keluar masuk massa kedalam sistem (massa selalu konstan) maka sistem ini disebut control mass.
Suatu sistem dapat mengalami pertukaran panas atau kerja atau keduanya, biasanya dipertimbangkan sebagai sifat pembatasnya:
§  Pembatas adiabatik: tidak memperbolehkan pertukaran panas.
§  Pembatas rigid: tidak memperbolehkan pertukaran kerja.
Dikenal juga istilah dinding, ada dua jenis dinding yaitu dinding adiabatik dan dinding diatermik. Dinding adiabatik adalah dinding yang mengakibatkan kedua zat mencapai suhu yang sama dalam waktu yang lama (lambat). Untuk dinding adiabatik sempurna tidak memungkinkan terjadinya pertukaran kalor antara dua zat. Sedangkan dinding diatermik adalah dinding yang memungkinkan kedua zat mencapai suhu yang sama dalam waktu yang singkat (cepat). 
3)   Sistem terisolasi
Sistem yang mengakibatkan tidak terjadinya pertukaran panas, zat atau kerja dengan lingkungannya. Contohnya : air yang disimpan dalam termos dan tabung gas yang terisolasi. Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.
Karakteristik yang menentukan sifat dari sistem disebut property (koordinat sistem/variabel keadaan sistem), seperti tekanan (p), temperatur (T), volume (v), masa (m), viskositas, konduksi panas dan lain-lain. Selain itu ada juga koordinat sistem yang didefinisikan dari koordinat sistem yang lainnya seperti, berat jenis, volume spesifik, panas jenis dan lain-lain. Suatu sistem dapat berada pada suatu kondisi yang tidak berubah, apabila masing-masing jenis koordinat sistem tersebut dapat diukur pada semua bagiannya dan tidak berbeda nilainya. Kondisi tersebut disebut sebagai keadaan (state) tertentu dari sistem, dimana sistem mempunyai nilai koordinat yang tetap. Apabila koordinatnya berubah, maka keadaan sistem tersebut disebut mengalami perubahan keadaan. Suatu sistem yang tidak mengalami perubahan keadaan disebut sistem dalam keadaan seimbang (equilibrium). 

Video: Hidrolik Sederhana



Video: The Bubble's Propeller



Hukum Ketiga Termodinamika


Hukum Termodinamika Ketiga menyatakan bahwa:
"pada suhu 0 K (-273 C) sistem ada dalam kondisi diam atau statis. Kondisi suhu lingkungan kita, anggap saja suhu ruang (25 C- 298 K) berada pada suhu yang tidak memungkinkan sistem untuk diam. Muncul lah Entropi."
Entropi merupakan derajat ketidakteraturan sistem. Dimana, semakin tidakteraturnya sistem, maka entropinya semakin besar. Dalam kondisi suhu lingkungan tadi, kita diminta alam untuk terus bergerak. Maka diam, menimbulkan kematian, is’nt right? Karena jika ingin diam, tinggallah di lingkungan dengan suhu 0 K (-273 C). Ya, kematian lah yang menjemput.
Namun, ingat ketidakteraturan pun akan mengantarkan kita pada sesuatu yang “tidak baik”, maka perhatikan gerak kita. Buatlah gerak yang lebih berirama, gerak yang lebih terarah, sehingga entropi yang terjadi dapat minimal. Tidak terjadi tabrak menabrak hingga timbul korban.
Berdasarkan persamaan entropsi 1 perubahan entropi suatu zat dapat mencapai nilai absolutnya pada suhu tertentu, sehingga pengukuran perubahan entropi dari satu suhu tersebut ke suhu lainnya.
Hukum ketiga termodinamika memberikan dasar untuk menetapkan entropi absolut suatu zat, yaitu entropi setiap kristal sempurna adalah nol pada suhu nol absolut atau nol derajat Kelvin (K). Pada keadaan ini setiap atom pada posisi yang pasti dan memiliki energi dalam terendah.
Entropi dan energi bebas Gibbs juga merupakan fungsi keadaan sehingga kedua besaran ini memiliki nilai pada keadaan standart, seperti halnya dengan entalphi. Hasil pengukuran standart untuk entropi dan Energi bebas Gibbs juga dilakukan pada keadaan 25oC dan dengan tekanan 1 atm.
Energi bebas Gibbs pembentukan standart memiliki arti perubahan energi bebas yang menyertai reaksi pembentukan satu mol senyawa dari unsur-unsur penyusunnya. Demikian pula untuk entropi standar yang dapat dipergunakan untuk menentukan entropi reaksi sebagai harga pembandingnya. Entropi dan Energi bebas Gibbs standar pembentukan, disajikan pada Tabel.
tabel 10.5
Tabel Entropi dan Energi bebas Gibbs pembentukan standar yang diukur pada 25oC tekanan 1 atm