Minggu, 26 April 2015

Intensitas Radiasi, Teori Max Planck


Teori Wien cocok dengan spektrum radaisi benda hitam untuk panjang gelombang yang pendek, dan menyimpang untuk panjang gelombang yang panjang.Teori Rayleigh-Jeans cocok dengan spektrum radiasi benda hitam untuk panjang gelombnag yang panjang, dan menyimpang untuk panjang gelombang yang pendek.Jelas bahwa fisika klasik gagal menjelaskan tentang radiasi benda hitam.Inilah dilema fisika klasik di mana Max Planck mencurahkan seluruh perhatiannya.







Teori spektrum radiasi benda hitam Rayleigh dan Jeans yang meramalkan intensitas yang tinggi pada panjang gelombang rendah (atau dikenal dengan ramalan bencana ultraungu).Ramalan bencana ultraungu dapat dipecahkan oleh teori Planck yang menganggap bahwa radiasi elektromagnetik dapat merambat hanya dalam paket-paket atau kuanta.

Pada tahun 1900 Max Planck mengemukakan teorinya tentang radiasi benda hitam yang sesuai dengan hasil eksperimen.Planck menganggap bahwa gelombang elektromagnetik berperilaku sebagai osilator di rongga.Getaran yang ditimbulkan osilator kemudian diserap dan dipancarkan kembali oleh atom-atom.Planck sampai pada kesimpulan bahwa energy yang dipancarkan dan diserap tidaklah kontinu.Tetapi, energi dipancarkan dan diserap dalam bentuk paket-paket energi diskret yang disebut kuanta.
Dengan hipotesanya, Planck berhasil menemukan suatu persamaan matematika untuk radiasi benda hitam yang benar-benar sesuai dengan data hasil eksperimennya.Persamaan Planck tersebut kemudian disebut hukum radiasi benda hitam Planck.Ia berpendapat bahwa ukuran energi kuantum (foton) sebanding dengan frekuensi radiasinya. Rumusannya adalah:
Energi minimum (hf) yang diradiasikan osilator disebut dengan kuantum energi.

Intensitas Radiasi, Hukum Pergeseran Wien

Hukum pergesera wien

Jika suatu benda misalnya logam dipanaskan terus pada suhu tinggi maka warna pijarnya  berubah mulai dari pijar merah ( kira-kira C ) sampai ke putih 9 kira-kira C ). Bentuk grafik antara intensitas radiasi cahaya terhadap panjang gelombangnya dinamakan grafik , pada berbagai suhu. Untuk suhu yang lebih tinggi , panjang gelombang untuk intensitas maksimum bergeser ke panjang gelombang yang lebih pendek.
Wilhelm Wien pada tahun 1896 menyatakan hukumnya yang dikenal dengan hukum Pergeseran Wien:  Panjang gelombang untuk intensitas cahaya maksimum berkurang dengan meningkatnya suhu.


Bila suhu benda terus ditingkatkan, intensitas relative dari spectrum cahaya yang dipancarkan berubah. Ini menyebabkan pergeseran dalam warna-warna spectrum yang diamati, yang dapat digunakan untuk menaksir suhu suatu benda seperti pada gambar
 Gambar diatas menunjukkan grafik antara intensitas radiasi yang dipancarkan oleh suatu benda hitam terhadap panjang gelombang (grafik I –l) pada berbagai suhu. Total energi kalor radiasi yang dipancarkan adalah sebanding dengan luas di bawag grafik. Tampak bahwa total energi kalor radiasi radiasi meningkat dengan meningkatnya suhu  (menurut hokum Stefan- Bolztman. Energi kalor sebanding dengan pangkat empat suhu mutlak.
Radiasi kalor muncul sebanding suatau spectra kontinu, bukan spectra diskret seperti garis-garis terang yang dilihat dalam spectra nyala api. Atau garis-garis gelap yang dapat dilihat dalam cahaya matahari (garis Fraunhofer) (Spektra adalah bentuk tunggal spectrum) Sebagai gantinya, semua panjang gelombang hadir dalam distribusi energi kalor yang luas ini.  Jika suhu bendahitam meningkat, panjang gelombang untuk intensitas maksimum (lm) bergeser ke nilai panjang gelombang yang lebih pendek.
Pengukuran spectra benda hitam menunjukkan bahwa panjang gelombang untuyk intensitas maksimum (lm) berkurang dengan meningkatnya suhu, seperti pada persamaan berikut :


Intensitas Radiasi, Hukum Stefan-Boltzman

Hukum Stefan-Boltzman

Pada tahun 1879 seorang ahli fisika dari Austria, Josef Stefan melakukan eksperimen untuk mengetahui karakter universal dari radiasi benda hitam.Ia menemukan bahwa daya total per satuan luas yang dipancarkan pada semua frekuensi oleh suatu benda hitam panas (intensitas total) adalah sebanding dengan pangkat empat dari suhu mutlaknya. Sehingga dapat dirumuskan:
Dengan menyatakan intensitas radiasi pada permukaan benda hitam pada semua frekuensi, adalah suhu mutlak benda, dan σ adalah tetapan Stefan-Boltzman, yang bernilai 5,67 × 10-8 Wm-2K-4. Gambar berikut memperlihatkan spektrum cahaya yang dipancarkan benda hitam sempurna pada beberapa suhu yang berbeda.Grafik tersebut memperlihatkan bahwa antara antara panjang gelombang yang diradiasikan dengan suhu benda memiliki hubungan yang sangat rumit.


Untuk kasus benda panas yang bukan benda hitam, akan memenuhi hukum yang sama, hanya diberi tambahan koefisien emisivitas yang lebih kecil daripada 1 sehingga:


Siklus Tenaga Uap Rankine

     Siklus Rankine adalah siklus daya uap yang digunakan untuk menghitung atau memodelkan proses kerja mesin uap / turbin uap. Siklus ini bekerja dengan fluida kerja air. Semua PLTU (pembangkit listrik tenaga uap) bekerja berdasarkan prinsip kerja siklus Rankine. Siklus Rankine pertama kali dimodelkan oleh: William John Macquorn Rankine, seorang ilmuan Scotlandia dari Universitas Glasglow.
Terdapat 4 proses dalam siklus Rankine, setiap siklus mengubah keadaan fluida (tekanan dan/atau wujud).
·                                         Proses 1: Fluida dipompa dari bertekanan rendah ke tekanan tinggi dalam bentuk cair. Proses ini membutuhkan sedikit input energi.
·                                         Proses 2: Fluida cair bertekanan tinggi masuk ke boiler di mana fluida dipanaskan hingga menjad uap pada tekanan konstan menjadi uap jenuh.
·                                         Proses 3: Uap jenuh bergerak menuju turbin, menghasilkan energi listrik. Hal ini mengurangi temperatur dan tekanan uap, dan mungkin sedikit kondensasi juga terjadi.
·                                         Proses 4: Uap basah memasuki kondenser di mana uap diembunkan dalam tekanan dan temperatur tetap hingga menjadi cairan jenuh.
Dalam siklus Rankine ideal, pompa dan turbin adalah isentropic yang berarti pompa dan turbin tidak menghasilkan entropi dan memaksimalkan output kerja. Dalam siklus Rankine yang sebenarnya, kompresi oleh pompa dan ekspansi dalam turbin tidak isentropic. Dengan kata lain, proses ini tidak bolak-balik dan entropi meningkat selama proses. Hal ini meningkatkan tenaga yang dibutuhkan oleh pompa dan mengurangi energi yang dihasilkan oleh turbin. Secara khusus, efisiensi turbin akan dibatasi oleh terbentuknya titik-titik air selama ekspansi ke turbin akibat kondensasi. Titik-titik air ini menyerang turbin, menyebabkan erosi dan korosi mengurangi usia turbin dan efisiensi turbin. Cara termudah dalam menangani hal ini adalah dengan memanaskannya pada temperatur yang sangat tinggi.
Efisiensi termodinamika bisa didapatkan dengan meningkatkan temperatur input dari siklus.
Ada beberapa cara untuk meningkatkan efisiensi termal siklus rankine dengan memodifikasi siklusnya.

Reheater  Pada Siklus Rankine

Cara pertama adalah dengan menggunakan dua turbin uap (High Pressure dan Low Pressure) yang keduanya berada pada satu poros. Uap air yang keluar dari turbin High Pressure masuk kembali ke boiler untuk dipanaskan kembali menjadi uap superheat. Setelah itu uap air tersebut kembali masuk ke turbin uap Low Pressure. Dari turbin kedua ini uap air masuk ke kondensor. PLTU modern sudah banyak menggunakan tiga atau bahkan 4 turbin uap, yaitu High Pressure Turbine, Intermediate Pressure Turbine, dan Low Pressure Turbine. Uap air reheater masuk kembali ke turbin intermediate pressure, selanjutnya tanpa mengalami reheater lagi uap air yang keluar dari intermediate pressure turbine masuk ke low pressure turbine.


Efek Kenaikan pada Siklus Rankine